Spatio-temporal Prediction of Wind Fields PhD Thesis
نویسنده
چکیده
Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatiotemporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex numbers. In a further development, the VAR coefficients are replaced with coefficient functions in order to capture the dependence of the predictor on external variables, such as the time of year or wind direction. The complex-valued approach is found to produce accurate speed predictions, and the conditional predictors offer improved performance with little additional computational cost. Two non-linear algorithms have been developed for wind forecasting. In the first, the predictor is derived from an ensemble of particle swarm optimised candidate solutions. This approach is low cost and requires very little training data but fails to capitalise on spatial information. The second approach uses kernelised forms of popular linear algorithms which are shown to produce more accurate forecasts than their linear equivalents for multi-step-ahead prediction. Finally, very-short-term wind power forecasting is considered. Five-minute-ahead
منابع مشابه
Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کاملA test for stationarity of spatio-temporal random fields on planar and spherical domains
A formal test for weak stationarity of spatial and spatio-temporal random fields is proposed. We consider the cases where the spatial domain is planar or spherical and we do not require distributional assumptions for the random fields. The method can be applied to univariate or to multivariate random fields. Our test is based on the asymptotic normality of certain statistics that are functions ...
متن کاملاستفاده از POD در استخراج ساختارهای متجانس یک میدان آشفته آماری- همگن
Capability of the Proper Orthogonal Decomposition (POD) method in extraction of the coherent structures from a spatio-temporal chaotic field is assessed in this paper. As the chaotic field, an ensemble of 40 snapshots, obtained from Direct Numerical Simulation (DNS) of the Kuramoto-Sivashinsky (KS) equation, has been used. Contrary to the usual methods, where the ergodicity of the field is need...
متن کاملAnalysing spatio-temporal patterns of the global NO2-distribution retrieved from GOME satellite observations using a generalized additive model
With the increasing availability of observational data from different sources at a global level, joint analysis of these data is becoming especially attractive. For such an analysis – oftentimes with little prior knowledge about local and global interactions between the different observational variables at hand – an exploratory, data-driven analysis of the data may be of particular relevance. I...
متن کاملKNN Regression as Geo-Imputation Method for Spatio-Temporal Wind Data
The shift from traditional energy systems to distributed systems of energy suppliers and consumers and the power volatileness in renewable energy imply the need for e↵ective short-term prediction models. These machine learning models are based on measured sensor information. In practice, sensors might fail for several reasons. The prediction models cannot naturally cannot work properly with inc...
متن کامل